Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 4989-4996, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38440851

RESUMO

The triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry.

2.
RSC Adv ; 13(33): 22895-22900, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37520098

RESUMO

Lithium oxy-thiophosphates isostructural with Li10GeP2S12 (LGPS) were synthesized by a liquid-phase process using 2-propanol as the solvent and Li2S and P2S5 as the starting materials. The XRD and 31P NMR results indicate that the synthesized compound has a slightly shrieked LGPS-type crystal structure where sulfur in PS43- is partially replaced by oxygen. The sample synthesized from the nominal composition of Li2S : P2S5 = 2.5 : 1 and at the annealing temperature of 300 °C exhibited the ionic conductivity of 1.6 × 10-4 S cm-1 at 25 °C. The synthesized solid electrolyte was found to be electrochemically stable in the potential range of 0-5 V, and also relatively stable under air with low relative humidity.

3.
Inorg Chem ; 60(17): 12753-12758, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428370

RESUMO

Combustion reactions between metal chlorides and sodium amide proceed in a short time; however, these reactions must be carried out with appropriate safety measures. Investigating their ignition temperatures would facilitate safe handling and give kinetic insights about the reaction between powders. Here, we investigated the products of the reactions between metal chlorides and sodium amide and measured their ignition temperatures. The products were mainly composed of nitrides, metals, and sodium chloride. The reactions of 4d and 5d metal chlorides initiated the reaction below room temperature, while 3d metal chlorides, except copper chloride, initiated the reaction upon heating. We found the correlation between the ignition temperatures and the reaction energies of the combustion reaction.

4.
Adv Sci (Weinh) ; 8(15): e2101413, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34138514

RESUMO

The main approach for exploring metastable materials is via trial-and-error synthesis, and there is limited understanding of how metastable materials are kinetically stabilized. In this study, a metastable phase superionic conductor, ß-Li3 YCl6 , is discovered through in situ X-ray diffraction after heating a mixture of LiCl and YCl3 powders. While Cl- arrangement is represented as a hexagonal close packed structure in both metastable ß-Li3 YCl6 synthesized below 600 K and stable α-Li3 YCl6 above 600 K, the arrangement of Li+ and Y3+ in ß-Li3 YCl6 determined by neutron diffraction brought about the cell with a 1/√3 a-axis and a similar c-axis of stable α-Li3 YCl6 . Higher Li+ ion conductivity and lower activation energy for Li+ transport are observed in comparison with α-Li3 YCl6 . The computationally calculated low migration barrier of Li+ supports the low activation energy for Li+ conduction, and the calculated high migration barrier of Y3+ kinetically stabilizes this metastable phase by impeding phase transformation to α-Li3 YCl6 . This work shows that the combination of in situ observation of solid-state reactions and computation of the migration energy can facilitate the comprehension of the solid-state reactions allowing kinetic stabilization of metastable materials, and can enable the discovery of new metastable materials in a short time.

5.
Adv Mater ; 33(24): e2100312, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33949743

RESUMO

Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing reaction conditions and precursors for ceramic synthesis can be a laborious, trial-and-error process, as heterogeneous mixtures of precursors often evolve through a complicated series of reaction intermediates. Here, ab initio thermodynamics is used to model which pair of precursors has the most reactive interface, enabling the understanding and anticipation of which non-equilibrium intermediates form in the early stages of a solid-state reaction. In situ X-ray diffraction and in situ electron microscopy are then used to observe how these initial intermediates influence phase evolution in the synthesis of the classic high-temperature superconductor YBa2 Cu3 O6+ x   (YBCO). The model developed herein rationalizes how the replacement of the traditional BaCO3 precursor with BaO2 redirects phase evolution through a low-temperature eutectic melt, facilitating the formation of YBCO in 30 min instead of 12+ h. Precursor selection plays an important role in tuning the thermodynamics of interfacial reactions and emerges as an important design parameter in planning kinetically favorable synthesis pathways to complex ceramic materials.

6.
Inorg Chem ; 60(10): 6964-6970, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33913700

RESUMO

ß-Li3PS4 is a solid electrolyte with high Li+ conductivity, applicable to sulfide-based all-solid-state batteries. While a ß-Li3PS4-synthesized by solid-state reaction forms only in a narrow 300-450 °C temperature range upon heating, ß-Li3PS4 is readily available by liquid-phase synthesis through low-temperature thermal decomposition of complexes composed of PS43- and various organic solvents. However, the conversion mechanism of ß-Li3PS4 from these complexes is not yet understood. Herein, we proposed the synthesis mechanism of ß-Li3PS4 from Li3PS4·acetonitrile (Li3PS4·ACN) and Li3PS4·1,2-dimethoxyethane (Li3PS4·DME), whose structural similarity with ß-Li3PS4 would reduce the nucleation barrier for the formation of ß-Li3PS4. Synchrotron X-ray diffraction clarified that both complexes possess similar layered structures consisting of alternating Li2PS4- and Li+-ACN/DME layers. ACN/DME was removed from these complexes upon heating, and rotation of the PS4 tetrahedra induced a uniaxial compression to form the ß-Li3PS4 framework.

7.
Front Chem ; 8: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117872

RESUMO

Ce1-x Pr x OBiS2 (0. 1 ≤ x ≤ 0.9) single crystals were grown using a CsCl flux method. Their structural and physical properties were examined by X-ray diffraction, X-ray absorption, transmission electron microscopy, and electrical resistivity. All of the Ce1-x Pr x OBiS2 single crystals with 0.1 ≤ x ≤ 0.9 exhibited tetragonal phase. With increasing Pr content, the a-axis and c-axis lattice parameters decreased and increased, respectively. Transmission electron microscope analysis of Ce0.1Pr0.9OBiS2 (x = 0.9) single crystal showed no stacking faults. Atomic-resolution energy dispersive X-ray spectrometry mapping revealed that Bi, Ce/Pr, O, and S occupied different crystallographic sites, while Ce and Pr randomly occupied the same sites. X-ray absorption spectra showed that an increase of the Pr ratio increased the ratio of Ce4+/Ce3+. All of the Ce1-x Pr x OBiS2 crystals showed superconducting transition, with a maximum transition temperature of ~4 K at x = 0.9.

8.
Dalton Trans ; 48(32): 12272-12278, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31339138

RESUMO

An extremely large displacement of the indium site in In-S6 octahedra in LnOInS2 (Ln = La, Ce, and Pr) was found in synchrotron X-ray diffraction. LaOInS2 with off-center indium in In-S6 octahedra exhibited a wider optical band gap than CeOInS2 and PrOInS2 with on-center indium. Therefore, the electronic structure of LnOInS2 is governed by the indium site with an extremely large displacement. All LnOInS2 produced H2 gas under visible light irradiation in the presence of sacrificial electron donors.

9.
Inorg Chem ; 57(9): 5364-5370, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676897

RESUMO

Ce1- xPr xOBiS2 powders and Ce0.5Pr0.5OBiS2 single crystals were synthesized and their structure and superconductive properties were examined by X-ray diffraction, X-ray absorption, electronic resistivity, and magnetization. While PrOBiS2 was found to be in a monoclinic phase with one-dimensional Bi-S zigzag chains showing no superconductive transition above 0.1 K, CeOBiS2 was in a tetragonal phase with two-dimensional Bi-S planes showing zero resistivity below 1.3 K. In the range x = 0.3-0.9 in Ce1- xPr xOBiS2, both monoclinic and tetragonal phases were formed together with zero resistivity up to a maximum temperature of 2.2 K. A Ce0.5Pr0.5OBiS2 single crystal, which showed both zero resistivity and a decrease in magnetization at ∼2.4 K, presented a tetragonal structure. Short Bi-S bonding in flat two-dimensional Bi-S planes and mixed Ce3+/Ce4+ were characteristic features of the Ce0.5Pr0.5OBiS2 single crystal, which presumably triggered its superconductivity.

10.
Inorg Chem ; 57(7): 4181-4188, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29561606

RESUMO

Organic-inorganic hybrid perovskite materials have recently been investigated in a variety of applications, including solar cells, light emitting devices (LEDs), and lasers because of their impressive semiconductor properties. Nevertheless, the perovskite structure has the ability to host extrinsic elements, making its application in the battery field possible. During the present study, we fabricated and investigated the electrochemical properties of three-dimensional (3D) methylammonium lead mixed-halide CH3NH3PbI3- xBr x and two-dimensional (2D) propylammonium-methlylammonium lead bromide (CH3NH3)2(CH3(CH2)2NH3)2Pb3Br10 hybrid perovskite thin films as electrode materials for Li-ion batteries. These electrodes were obtained by solution processing at 100 °C. CH3NH3PbBr3 achieved high discharge/charge capacities of ∼500 mA h g-1 /160 mA h g-1 that could account also for other processes taking place during the Li intercalation. It was also found that bromine plays an important role for lithium intercalation, while the new 2D (CH3NH3)2(CH3(CH2)2NH3)2Pb3Br10 with a layered structure allowed reversibility of the lithium insertion-extraction of 100% with capacities of ∼375 mA h g-1 in the form of a thin film. Results suggest that tuning the composition of these materials can be used to improve intercalation capacities, while modification from 3D to 2D layered structures contributes to improving lithium extraction. The mechanism of the lithium insertion-extraction may consist of an intercalation mechanism in the hybrid material accompanying the alloying-dealloying process of the Li xPb intermetallic compounds. This work contributes to revealing the relevance of both composition and structure of potential hybrid perovskite materials as future thin film electrode materials with high capacity and compositional versatility.

11.
Inorg Chem ; 57(1): 24-27, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29219303

RESUMO

An intense exothermic and explosive reaction between Ba(OH)2, NbCl5, and NaNH2 produced barium niobium perovskite oxynitride in seconds. The addition of hexane reduced the risk of explosion during mixing of the starting materials, and subsequent heat treatment at 498 K in hexane allowed control of this exothermic reaction, leading to formation of the perovskite oxynitride with fewer impurities. The synthesis of barium tantalum perovskite oxynitride under similar reaction conditions was successful.

12.
Inorg Chem ; 56(6): 3174-3181, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28233995

RESUMO

We have synthesized a new superconducting perovskite bismuth oxide by a facile hydrothermal route at 220 °C. The choice of starting materials, their mixing ratios, and the hydrothermal reaction temperature was crucial for obtaining products with superior superconducting properties. The structure of the powder sample was investigated using laboratory X-ray diffraction, high-resolution synchrotron X-ray diffraction (SXRD) data, and electron diffraction (ED) patterns [transmission electron microscopy (TEM) analysis]. The refinement of SXRD data confirmed a simple perovskite-type structure with a cubic cell of a = 4.27864(2) Å [space group Pm3̅m (No. 221)]. Elemental analysis detected magnesium in the final products, and a refinement based on SXRD and inductively coupled plasma data yielded an ideal undistorted simple cubic perovskite-type structure, with the chemical composition (Ba0.62K0.38)(Bi0.92Mg0.08)O3. ED patterns also confirmed the simple cubic perovskite structure; the cube-shaped microstructures and compositional homogeneity on the nanoscale were verified by scanning electron microscopy and TEM analyses, respectively. The fabricated compound exhibited a large shielding volume fraction of about 98% with a maximum Tcmag of ∼30 K, which was supported by the measured bismuth valence as well. Its electrical resistivity dropped at ∼21 K, and zero resistivity was observed below 7 K. The compound underwent thermal decomposition above 400 °C. Finally, the calculated band structure showed a metallic behavior for this hydrothermally synthesized bismuth oxide.

13.
ACS Omega ; 2(8): 5271-5282, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457798

RESUMO

The relationship of liquidus temperatures among six binary and four ternary phases in a Ag-Al-Sn-Zn system was analyzed by means of statistical modeling. Four statistical models to predict changes in the liquidus temperatures in Ag-Al-Sn-Zn were proposed on the basis of different hypotheses derived from macroscopic and microscopic standpoints. The results of interpolation tests to evaluate the prediction accuracies of the ternary liquidus temperatures suggested that the multivariate regression model based on binary liquidus temperatures, interactive binary liquidus temperatures, and products of atomic ratios was found to be the most effective among the four models. It was numerically shown that the prediction accuracies of the liquidus temperatures in local ternary systems of Ag-Al-Sn-Zn can be improved further by using the models identified in their neighboring systems. Finally, the possibility to extract the general trend and the abnormal combination of elements for the prediction of liquidus temperatures was discussed on the basis of the statistical framework we considered.

14.
Angew Chem Int Ed Engl ; 55(28): 7963-7, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27193352

RESUMO

The catalytic activity of manganese oxynitrides in the oxygen reduction reaction (ORR) was investigated in alkaline solutions to clarify the effect of the incorporated nitrogen atoms on the ORR activity. These oxynitrides, with rock-salt-like structures with different nitrogen contents, were synthesized by reacting MnO, Mn2 O3 , or MnO2 with molten NaNH2 at 240-280 °C. The anion contents and the Mn valence states were determined by combustion analysis, powder X-ray diffraction, and X-ray absorption near-edge structure analysis. An increase in the nitrogen content of rock-salt-based manganese oxynitrides increases the valence of the manganese ions and reinforces the catalytic activity for the ORR in 1 m KOH solution. Nearly single-electron occupancy of the antibonding eg states and highly covalent Mn-N bonding thus enhance the ORR activity of nitrogen-rich manganese oxynitrides.

15.
Inorg Chem ; 54(21): 10462-7, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479778

RESUMO

The relationship between the structure and superconductivity of Bi4O4S3 powders synthesized by heating under ambient and high pressures was investigated using synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy (TEM) observation. The Bi4O4S3 powders synthesized under ambient pressure exhibited a strong superconductivity (diamagnetic) signal and zero resistivity below ∼4.5 K, while the Bi4O4S3 powder synthesized by the high-pressure method exhibited a low-intensity signal down to 2 K. Further annealing of the latter Bi4O4S3 powder under ambient pressure led to the development of a strong signal and zero resistivity. The crystal structures of all Bi4O4S3 phases consisted of Bi4O4Bi2S4 blocks including a Bi-S layer and anion(s) sandwiched between Bi4O4Bi2S4 blocks, but minor structural differences were detected. A comparison of the structures of the superconductive and nonsuperconductive Bi4O4S3 samples suggested that the superconductive Bi4O4S3 phases had slightly smaller lattice parameters. The average structures of the superconductive Bi4O4S3 phases were characterized by a slightly shorter and less bent Bi-S plane. Raman spectroscopy detected vibration of the S-O bonds, which can be attributed to sandwiched anion(s) such as SO4(2-). TEM observation showed stacking faults in the superconductive Bi4O4S3 phases, which indicated local fluctuation of the average structures. The observed superconductivity of Bi4O4S3 was discussed based on impurity phases, enhanced hybridization of the px and py orbitals of the Bi-S plane within Bi4O4Bi2S4 blocks, local fluctuation of the average structures, compositional deviation related to suspicious anion(s) sandwiched between Bi4O4Bi2S4 blocks, and the possibility of suppression of the charge-density-wave state by enriched carrier concentrations.


Assuntos
Bismuto/química , Enxofre/química , Microscopia Eletrônica de Transmissão , Análise Espectral Raman , Difração de Raios X
16.
Sci Rep ; 5: 14968, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26447333

RESUMO

BiCh2-based compounds (Ch: S, Se) are a new series of layered superconductors, and the mechanisms for the emergence of superconductivity in these materials have not yet been elucidated. In this study, we investigate the relationship between crystal structure and superconducting properties of the BiCh2-based superconductor family, specifically, optimally doped Ce1-xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1-ySey)2. We use powder synchrotron X-ray diffraction to determine the crystal structures. We show that the structure parameter essential for the emergence of bulk superconductivity in both systems is the in-plane chemical pressure, rather than Bi-Ch bond lengths or in-plane Ch-Bi-Ch bond angle. Furthermore, we show that the superconducting transition temperature for all REO0.5F0.5BiCh2 superconductors can be determined from the in-plane chemical pressure.

17.
Dalton Trans ; 44(34): 15279-85, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26031773

RESUMO

Surface modification of inorganic objects with metal-organic frameworks (MOFs) - organic-inorganic hybrid framework materials with infinite networks - opens wide windows for potential applications. In order to derive a target property, the key is the ability to fine tune the degree of modification. Solution-based step-by-step growth techniques provide excellent control of layer thickness which can be varied with the number of deposition cycles. Such techniques with MOFs have been mainly applied to flat substrates, but not to particle surfaces before. Here, we present the facile surface modification of inorganic particles with a framework compound under operationally simple ambient conditions. A solution-based sequential technique involving the alternate immersion of LiCoO2 (LCO) - a positive electrode material for a lithium ion battery - into FeCl2·4H2O and K3[Fe(CN)6] solutions results in the formation of Prussian blue (PB) nanolayers on the surface of the LCO particles (PBNL@LCO). The PB growth is finely controlled by the number of immersion cycles. An electrochemical cell with PBNL@LCO as a positive electrode material exhibits a discharge capacity close to the specific capacity of LCO. The results open a new direction for creating suitable interfacial conditions between electrode materials and electrolytes in secondary battery materials.

18.
Adv Mater ; 22(39): 4401-4, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20806267

RESUMO

An alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts is proposed. So-called hydrotalcite clay, Mg­Al layered double hydroxide intercalated with CO3²â», is shown to be a hydroxide ion conductor. An alkaline-type DEFC using this natural clay as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibits excellent electrochemical performance from room temperature to 80 °C.


Assuntos
Hidróxido de Alumínio/química , Silicatos de Alumínio/química , Condutividade Elétrica , Eletroquímica/métodos , Etanol/química , Hidróxido de Magnésio/química , Argila , Eletrólitos/química , Temperatura
19.
J Nanosci Nanotechnol ; 7(9): 3307-12, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18019165

RESUMO

Spherical polyphenylsilsesquioxane (PhSiO(3/2)) particles, one of the inorganic-organic hybrid materials, were synthesized by a two-step acid-base catalyzed sol-gel process, and hollow particles were successfully prepared by washing the as-prepared particles with organic solvents. It was found that the inside and outside parts of the as-prepared particles were composed of PhSi03/2 species with relatively low and high molecular weight, respectively, i.e., the PhSiO(3/2) particles had a kind of "core-shell" structure. Because the core portion in the as-prepared particles was soluble in ethanol and tetrahydrofuran, hollow particles were obtained through washing the as-prepared PhSiO(3/2) particles with ethanol or tetrahydrofuran. Furthermore, the molecular weight of the as-prepared particles was varied by the concentration of phenyltriethoxysilane used as a starting alkoxide. As a result of the variation of the molecular weight, the hollow PhSiO(3/2) particles with different stabilities against organic solvents were formed.


Assuntos
Química/métodos , Nanotecnologia/métodos , Compostos de Organossilício/química , Compostos de Silício/química , Química Inorgânica/métodos , Química Orgânica/métodos , Cromatografia em Gel , Etanol/química , Furanos/química , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão , Peso Molecular , Transição de Fase , Solventes/química , Fatores de Tempo
20.
J Am Chem Soc ; 128(51): 16470-1, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17177374

RESUMO

Inorganic-organic hybrid membranes with anhydrous proton conduction were prepared from 3-aminopropyltriethoxysilane and H2SO4 by the sol-gel method. The membrane has a unique structure: a hexagonal phase formed by the stacking of rodlike polysiloxanes with ion complexes of ammonium groups and HSO4- extruded outside. The membranes showed high conductivity of 2 x 10-3 S cm-1 at 200 degrees C under dry atmosphere. In the membrane, protons probably migrate through the outside of the rodlike polysiloxanes along hydrogen-bond chains formed among HSO4- anions.


Assuntos
Membranas Artificiais , Silanos/química , Ácidos Sulfúricos/química , Géis/química , Estrutura Molecular , Nanoestruturas/química , Propilaminas , Prótons , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...